
WSMX - A Semantic Service-Oriented Architecture

Armin Haller Emilia Cimpian Adrian Mocan Eyal Oren
Christoph Bussler

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway, Ireland

firstname.lastname@deri.org

Abstract

Web Services offer an interoperability model that ab-
stracts from the idiosyncrasies of specific implementations;
they were introduced to address the increasing need for
seamless interoperability between systems in the Business-
to-Business domain. We analyse the requirements from this
domain and show that to fully address interoperability de-
mands we need to make use of semantic descriptions of Web
Services.

We therefore introduce the Web Service Execution Envi-
ronment (WSMX), a software system that enables the cre-
ation and execution of Semantic Web Services based on the
Web Service Modelling Ontology. Providers can use it to
register and offer their services and requesters can use it to
dynamically discover and invoke relevant services. WSMX
allows a requester to discover, mediate and invoke Web Ser-
vices in order to carry out its tasks, based on services avail-
able on the Internet.

1 Introduction

Interoperability problems are imminent in the domain of
Business-to-Business (B2B) electronic commerce. When
businesses engage in electronic trade they have to align their
business applications with those of their trading partners; a
Gartner report1 shows that these integration costs account
for around 40% of the average information technology bud-
gets. Web Services were introduced as an answer to the
continuously increasing need for seamless interoperability
between systems in the B2B domain [9], offering a perfectly
matching interoperability model abstracting from the idio-
syncrasies of specific implementations.

However, several requirements from this domain are
not fulfilled by current Web Service standards like SOAP2

1http://www.gartner.com
2see http://www.w3.org/TR/soap/

and WSDL3. To fully exploit Web Services in the B2B
domain it is necessary to introduce semantic, machine-
understandable, descriptions of Web Services. Using se-
mantic descriptions of Web Services (and of various related
aspects like data models or communication patterns) one
can build Web Service architectures that solve the interop-
erability problem to a much higher degree than current sys-
tems (or solve it completely, in certain situations).

In this paper we introduce WSMX, our comprehensive
execution environment for Semantic Web Services, the ref-
erence implementation of the Web Service Modelling On-
tology4. WSMX is completely built and designed around
Semantic Web Services; it internally uses all the concepts
that we address. As such, it is an example of a truly seman-
tic service-oriented architecture (SSOA).

The structure of this paper is as follows: first we de-
scribe the requirements from the Business-to-Business do-
main and show why current Web Service standards do not
address them by far. Then we introduce the fundamental
idea of Semantic Web Services and describe the framework
we adopted, namely the Web Service Modelling Ontology.
Next we introduce WSMX as the execution environment
for Semantic Web Services; we show usage scenarios for
WSMX and explain how WSMX addresses the B2B re-
quirements. We describe the architecture of WSMX and
how WSMX can be used to realise a very flexible yet ro-
bust and reliable Web Service architecture in the sense of a
SSOA.

2 Requirements for Web Services

Businesses have electronically supported commercial
transactions for several decades, although the relevant tech-
nologies have changed over time. We focus on the B2B
market, as the interoperability problem is larger than in the
Business-to-Consumer market: the number of trading part-

3see http://www.w3.org/TR/wsdl/
4see http://www.wsmo.org/



ners is higher, the trading volumes are higher and the en-
vironment is more heterogeneous, because businesses can
influence to a much lesser extent the systems used by their
trading partners.

Web Services were specifically developed to address the
problem of interoperability between applications [9]. Be-
fore the advent of Web Services, architectures of application
integration systems used custom adapters to connect legacy
applications.

Although Web Services sufficiently address some re-
quirements from the B2B domain, more is needed to solve
the integration problem. Several calls for semantic annota-
tion of Web Services have been made, with the following
requirements from the B2B domain [2, 3, 4]:

Discovery: requesters of certain services need to find the
relevant providers of these services. For discovering
them one can make use of directory services. The
problem with current approaches (for instance UDDI5)
is that the described functionality of registered ser-
vices is not machine-understandable, but informal (for
instance in natural language). Therefore no mecha-
nised support for discovering services can be given;
currently keyword-based search is the only means of
finding relevant services.

Discovering services need not necessarily be fully au-
tomated (one can find many non-technical objections
to fully automated discovery), but support for some
richer discovery than keyword-based search is neces-
sary.

Interoperability: requesters and providers communicate
and exchange data which may lead to interoperabil-
ity problems. On top of the data mismatch (in struc-
ture and meaning) interoperability problems also occur
when considering more complex communication pat-
terns (a request-reply is a simple communication pat-
tern, a more complex one could for instance involve a
negotiation, and consist of many communicative acts
on both sides). In a complex pattern mismatches can
occur between the communication pattern of the re-
quester and that of the provider.

Current standards like XML and XML Schema only
solve the mismatch on the syntactical and structural
level; solving the mismatch on the semantic level is
usually handled on a case-by-case basis (for instance
using custom adapters). Mismatches on the communi-
cation patterns are not dealt with in current standards;
semantics of the message exchange sequences is nec-
essary to solve the mismatches on that level.

Composition: the service-oriented paradigm builds on the
notion of composing virtual components into complex

5see http://www.uddi.org/

behaviour. A requester can use the functionality of-
fered by multiple providers without worrying about the
underlying differences in hardware, operating systems,
programming languages, etc. Each service is designed
to satisfy a business task while possibly collaborating
with applications or services provided by other enti-
ties.

A number of approaches exists for modelling Web Ser-
vice composition. Although these Web Service com-
position languages are more suitable than the propri-
etary languages used in traditional workflow products
[17], they lack the possibility to dynamically bind to
Web Services at run time [11]. Service requesters have
to bind specific services at design time which means
they cannot take advantage of the large and constantly
changing amount of Web Services available.

Security and Reliability: To secure Web Services, a range
of security mechanisms are needed to solve problems
related to authentication, authorisation, data integrity
and data confidentiality. Fundamentally, each message
exchange should be private and unmodified between
the service requester and service provider as well as
non-repudiable.

Traditional network level security mechanisms such
as Transport Layer Security and Secure Multipurpose
Internet Mail Exchange are the most commonly used
point-to-point technologies. They are not sufficient for
providing end-to-end security, since Web Services use
a message-based approach that enables complex inter-
actions, which can include the routing of messages be-
tween and across various trust domains [2].

Web Service security standards are currently emerging
and not yet broadly-adopted in Web Service architec-
tures. Security is not specifically related to Semantic
Web Services, but crucial for the B2B domain.

3 WSMO

Enriching Web Services with semantic mark-up is es-
sential in addressing the previously described requirements.
Semantic mark-up can be exploited to automate the tasks of
discovering, executing, composing and interoperating ser-
vices.

The Web Service Modelling Ontology6 (WSMO) is a
formal ontology for describing various aspects related to
Semantic Web Services. The objective of WSMO and its
surrounding efforts is to define a coherent technology for
Semantic Web Services by providing the means for semi-
automated discovery, composition and execution of Web
Services which are based on logical inference-mechanisms.

6see http://www.wsmo.org/2004/d2/v1.0



WSMO defines four main modelling elements for de-
scribing several aspects of Semantic Web Services: ontolo-
gies, Web Services, goals and mediators. In what follows,
we will describe all these elements, insisting on their impor-
tance in reaching a truly Semantic Web Service technology.

As defined in [5], ontologies are formal explicit specifi-
cations of shared conceptualisations. In WSMO they repre-
sent key elements, having a twofold purpose: firstly they
define the information’s formal semantics and secondly,
they allow to link machine and human terminologies. The
WSMO ontologies give meaning to the other elements (Web
Services, goals and mediators), and provide common se-
mantics, understandable by all the involved entities (both
humans and machines).

In WSMO, requesters of a service express their objec-
tives to be solved by Web Services as goals, which are high
level descriptions of concrete tasks. Every requester ex-
presses its goal in terms of its own ontology, which, on one
hand provides the means for a human user to understand the
goal, and on the other hand allows a machine to interpret it
as part of the requester’s ontology. Another advantage of us-
ing goals is that the requester only has to provide a declara-
tive specification of what it wants, and does not need to have
a fixed relation with the Web Service or to browse through
an UDDI registry for finding Web Services that provide the
appropriate capability.

To accomplish this goal the requester (by means of its in-
formation system) has to find an appropriate Web Service,
which may fulfil the required task. Similar to the way the
requester declares its goal, every Web Service has to de-
clare its capability (that is, what it is able to accomplish) in
terms of its own ontology. If the requester of the service
and the Web Service that offers it use the same ontology the
matching between the goal and the capability can be directly
established. Unfortunately, in most of the cases they use
different ontologies, and the equivalence between the goal
and the capability can be determined only if a third party is
consulted for determining the similarities between the two
ontologies. Another problem that may appear is the inca-
pacity of the requester and of the provider of the service to
communicate with each other, the reason for this being the
heterogeneity of their communication protocols. For these
reasons, WSMO introduces the fourth key modelling ele-
ment: the mediators, which have the task of overcoming the
heterogeneity problems, both at data level and at communi-
cation level.

4 WSMX

The Web Service Execution Environment (WSMX)7 is
a reference implementation for WSMO, designed to allow

7see http://sourceforge.net/projects/wsmx/

dynamic discovery, invocation and composition of Web Ser-
vices. WSMX offers complete support for interacting with
Semantic Web Services. In addition, WSMX supports the
interaction with non-WSMO, but classical Web Services en-
suring that a seamless interaction with existing Web Ser-
vices is possible.

WSMX is a useful framework for both Web Service
providers and requesters. As a provider, one may register
its service using WSMX in order to make it available to the
consumers and, as a requester, one can find the Web Ser-
vices that suits their needs and then invoke them in a trans-
parent, secure and reliable way. WSMX itself is made avail-
able as a Web Service, so either for finding a Web Service
or for actually invoking Web Services a requester has just
to invoke WSMX itself. In the first case, a formal descrip-
tion of requester goal has to be provided, and in the second
case, the actual data the requester wants to use for the in-
vocation. In this way, WSMX can take care of all the other
required computations such as heterogeneity reconciliation,
composition, security or compensation.

WSMX supports a common B2B scenario, acting as
an information system representing the central point of a
hub-and-spoke architecture. If two partners want to com-
municate they only abstract their functionality to WSMX.
WSMX itself is a Web Service, so if the applications offer
their functionality as a WSDL interface no adapters need
to be developed. Acting as this central integration point
WSMX reduces the total number of interfaces from n(n−1)
to 2n: instead of interfaces to each partner, only single in-
terfaces to WSMX are necessary.

We will start the next section with a brief presentation
of the WSMX architecture, followed by a more detailed de-
scription of some of the components default implementa-
tions.

4.1 WSMX Architecture

As mentioned WSMX has two operational aspects [12]:
the registration and the execution of Semantic Web Ser-
vices. Figure 1 presents the WSMX architecture and its
most important components.

The Registration process (see Figure 2) is used to reg-
ister descriptions of entities with the WSMX system. The
WSMO Editor is used to create the description of the Web
Services, ontologies, mediators and goals. These descrip-
tions are passed to the Compiler for validation and for stor-
ing the compiled data in the repository.

The Execution process consists of two phases: the Dis-
covery and the Invocation of Web Services. The first phase
identifies those Web Services that suit the requester goal,
the second phase makes the actual invocation of the selected
Web Service.

In the Discovery phase, the Matchmaker matches the ca-



Figure 1. Simplified WSMX Architecture

pability of Web Services in the Service Repository against
the requester goal and returns a set of Web Services. The
Selector component chooses one Web Service that best suits
the requester preferences. The Data Mediator can be used to
overcome the eventual mismatches that can occur between
the goal and capability formalisations.

In the Invocation phase, the Communication Manager in-
vokes the selected Web Services. As in the previous case,
the help of the Data Mediator may be required, this time
to transform the incoming data from one conceptualisation
(used by the requester) into another conceptualisation (used
by the provider). Also the Choreography Engine is used
to link the communication patterns (choreographies) of the
requester and of the Web Service.

The WSMX Manager implements the execution seman-
tics of the system and offers the underlying mechanisms for
an event-based architecture. The Resource Manager offers
an abstraction layer to the persistence layer.

4.2 WSMX components

This section describes in more detail the most important
components of the WSMX architecture presented above.
WSMX offers default implementations for these compo-
nents. These are connected to the architecture through a set
of placeholders that have precisely defined interfaces; this
allows external components to be easily plugged-in. Exist-
ing implementations of components can thus be replaced
over time with alternative or more expressive implemen-
tations. In addition, using the same mechanism, WSMX
aims to offer dynamic discovery of Web Services having
the same functionality as the default components, in order
to achieve higher performance and accuracy.

4.2.1 Adapter

Adapters address a problem occurring even before the
above mentioned interoperability becomes an issue, namely
when trying to connect external systems to WSMX. Al-
though they are outside the WSMX architecture (see Figure
1), we briefly describe them here to emphasise their role
in overcoming data representation mismatches on the com-
munication layer. These systems, often referred to as back-
end applications, do not natively support WSML and may
not be able to directly send messages to a WSMX instance.
On a conceptual level, an Adapter transforms the format
of a received message or even extracted data from an API
into the WSML compliant format understood by WSMX.
The transformation based on mapping rules is concerned
with the syntactical mapping of the messages formats while
maintaining the semantics of the message.

4.2.2 Compiler

The Compiler component is responsible for checking the
syntactical validity of WSML documents and for storing
the parsed information persistently. The Compiler is be-
ing used in both operational aspects of WSMX (registra-
tion and execution). During the registration of services the
Compiler reads a service description, validates and finally
stores it. During execution of services the Compiler reads
a goal description, validates and stores it, after which the
goal is passed to the management component in order to be
resolved.

Since various projects are already implementing differ-
ent systems using WSMO, an initiative has started for an
Open-Source WSMO API8. This API and its accompa-

8http://wsmo4j.sourceforge.net/



Figure 2. Simplified Operational Aspects of WSMX

nying reference implementation offer methods for parsing
a WSMO document and for constructing an in-memory
model of this document, for querying and modifying this
model and for serialising it into different persistent storage
solutions. The work on this API is integrated with the work
on the WSMX Compiler component.

4.2.3 Matchmaker

The matchmaking component is responsible for finding ap-
propriate Web Services to achieve a goal. This component’s
input is a set of (existing) Web Services and a requester’s
goal; the output is a set of Web Services that can fulfil the
goal. A different problem is finding the set of all existing
Web Services (discovery); we have not yet addressed this
(non-trivial) problem: WSMX contains a local repository
of known Web Services and can also use external (UDDI-
like) repositories.

As previously mentioned, the capability of a service de-
scribes what the service promises to deliver while the goal
describes what a service requester wants to have achieved.
Matchmaking should come up with those services that can
be used to fulfil the goal. The user may be interested also
in services that will not exactly deliver what they are asking
for, but are to some extent related to it. Therefore, sev-
eral degrees of matches can be considered, each varying in
the degree of satisfaction of the user’s goal. The notion of
matching goals to services is similar to component match-
making, cf. [10].

In the first release of the WSMX implementation, the
built-in matchmaking is performed by simple string-based

comparison of the requester goal with the various Web Ser-
vice capabilities available in the WSMX repository. How-
ever, several techniques and implementations [6, 7] are al-
ready being developed for doing discovery on WSMO goal
and services and are designed to be adopted for WSMX.
The event and component based architecture of WSMX
makes it possible to adopt implementations for the discov-
ery component, resulting from the ongoing research, once
such implementations become stable.

4.2.4 Data Mediator

The Data Mediator corresponds to the ooMediator from the
WSMO specifications, being the only type of the four me-
diators described in WSMO we implemented so far. Thus,
the main assumption we make is that both the sender of the
data (in our case the service requester) and the receiver of
the data (the service provider) use ontologies as means for
expressing the semantic of their data. Development and im-
posing a global ontology is not a realistic nor a feasible ap-
proach both from a technical and business point of view.
Such a global ontology should be general enough to cover
all the partners needs in a consistent way as well as the po-
tential changes of these requirements in dynamic manner.
In addition, the trust issues together with the requirements
of a competing environment leads to the usage of different
ontologies. It is the task of this component to transform the
incoming data from the terms of sender’s conceptualisation
(source ontology) in terms of the target’s conceptualisation
(target ontology).

The Data Mediator part of the WSMX architecture rep-



resents only a subcomponent of a complete Data Mediation
Component9. That is, the Data Mediation Component has
two main sub-components: a design-time component used
for identifying the similarities of two given conceptualisa-
tions of a domain, and a run-time component that performs
the actual transformations on the working data. The run-
time subcomponent is the one present in the WSMX archi-
tecture and even if the design-time component is not ex-
plicitly part of the WSMX architecture, it enables the sec-
ond one’s functionality, i.e. validated mappings are saved
in given storage for being picked up later by the run-time
subcomponent.

The run-time subcomponent (our WSMX Data Media-
tor) is able to load the stored mappings, to create the nec-
essary rules (a rule is a language specific representation
of mappings), to apply them to the input data (source in-
stances) and to pass forward the mediated data (target in-
stances). The whole process is executed automatically, us-
ing the previously identified similarities. While the design-
time component acts on the schema level of the two ontolo-
gies, the run-time component acts on instance level, creat-
ing the target instances to be used in further computations
(e.g. in the invocation).

4.2.5 Choreography Engine

The choreography of a Web Service defines its communica-
tion pattern, that is, the way a requester (which may as well
be another Web Service) can interact with it. The requester
of the service has its own communication pattern and only
if the two of them match precisely, a direct communication
between the requester and the provider of a service may take
place.

In the context of communication pattern heterogeneity
equivalence has a different meaning than for the data hetero-
geneity: by communication process equivalence we under-
stand the full matching of the communication pattern from
the source and target parties. That means that for each pos-
sible instance of the source choreography at least one in-
stance of the target choreography is available.

Since usually the client has its own communication pat-
tern that in general is different from the one used by the
Web Service, the two of them will not be able to directly
communicate, even if they are able to understand the same
data formats. In order to communicate the two parties must
be able to redefine their communication patterns (or at least
one of them has to) or to use an external mediation system as
part of the process. The first solution is generally a very ex-
pensive one implying changes in the entities’ business logic,
and it is not suitable in a dynamic environment since every
participant would have to readjust its pattern (through re-
programming) each time it gets involved in a new partner-

9see http://www.wsmo.org/2004/d13/d13.3

ship. As a consequence, the role of the mediator system will
be to compensate the client’s communication pattern or the
Web Service’s communication pattern in order to obtain an
equivalent processes.

The role of the Choreography Engine is to put together
the necessary means for the runtime analyses of two given
choreography instances and to use the mediators to com-
pensate the possible mismatches that may appear, for in-
stance, to generate dummy acknowledgement messages, to
group several messages in a single one, to change their order
or even to remove some of the messages in order to facili-
tate the communication between the two parties. The above
presented functionality is based on a design time process
which identifies the equivalences between the choreogra-
phies’ conceptual descriptions, that is, a set of rules are cre-
ated and stored, in order to be later applied on the particular
choreography instances, during runtime.

4.2.6 Composition

The composition component is responsible for executing
complex compositions of services in order to achieve a cer-
tain goal. The language for specifying these compositions
is still under consideration in WSMO. We have investigated
two initial approaches, to use hard-coded business rules
for composing goals and to embed WSMX in an external
process language [14]. Given the component-based archi-
tecture of the WSMX system we believe that defining and
implementing a specific composition formalism in a later
stadium can be achieved without problems.

4.2.7 Communication Manager

The Communication Manager has two major tasks: first,
to handle the various invocations that may come from re-
questers and second, to invoke Web Services and to retrieve
the results of these invocations back to WSMX (this could
happen either as a consequence of a synchronous call or by
a separate invocation of WSMX in case of asynchronous
calls).

Currently, even if a semantic description is provided for
a certain Web Service capability (e.g. in order to register
to WSMX), the actual invocation still has to be made in a
classical way, by representing all the data needed for the in-
vocation in XML format. On the other hand, all the WSMX
components and all its internal mechanisms operate using
the semantic descriptions provided by WSMO. In order to
make the bridge between the semantic descriptions and the
classical syntactic Web Service descriptions, WSMX pro-
vides the necessary means for lifting non-semantic descrip-
tions (e.g. XML messages and XML schemas) to a seman-
tic level and to lower the elements semantically described
(e.g. ontology instances and concepts) to the level required
by the classical approaches. For accomplishing these tasks,



additional, intermediary components need to be introduced
to perform the lifting and lowering operations, the Adapters
(addressed in a previous section).

These two operations described above (i.e. lifting and
lowering) may seem as burdensome and not very elegant
from the Semantic Web Services point of view. But we
believe that this is only an intermediary solution meant to
compensate the current lack of fully semantically described
Web Services (e.g. as WSMO presents them) on the In-
ternet. For Semantic Web Services described according to
WSMO specifications, the Communication Manager task is
much simpler: no calls to Adapters are necessary, but only
a simple invocation with the proper data as the semantics of
the service interface specifies.

5 Related Work

Since WSMX is a sample implementation of WSMO, we
have to differ between implementations that are also based
on WSMO and implementations that use other frameworks.

IRS [13] is the only other execution environment based
on WSMO, and can interoperate with WSMX. With the cur-
rent version of IRS3 a service provider can create a WSMO
service description that can be published against their ser-
vice on the IRS3 server. Once the service description is
available, a goal can be described in WSMO and bound
to the published Web Service description using a mediator.
The main limitation of this approach is that the binding is
still at design time, but the use of mediators to link goals
and services removes the manual hard-wiring required for
standard Web Services.

OWL-S [15] is an OWL-based Web Service ontology,
where service descriptions define what the service provides
for the seeking agent, describe how the service works and
what happens when it is carried out and specify how the ser-
vice should be used in terms of the communication protocol,
the message format etc. The main differences in the concep-
tual model between WSMO and OWL-S is that WSMO dif-
fers between the service requester and the provider and it in-
troduces the concept of mediators to enable the requester of
services to use different terminologies than the provider. An
extensive comparison of WSMO and OWL-S can be found
in [8].

No complete toolset for OWL-S is available, only sepa-
rate tools such as a composer, a matchmaker and an editor
[16]. These tools suffer from the limitations of OWL-S,
they especially lack a mediation facility.

METEOR-S [18] works with existing Web Services
technologies and combines them with ideas from the Se-
mantic Web to enable Web service discovery and compo-
sition. It does not introduce a new ontology language,
but uses DAML+OIL and RDF(S) to map WSDL message
types (inputs, outputs) and operations to concepts in domain

ontologies. The core tool is called MWSAF, and consists
of three components: the ontology-store, the translator li-
brary, and the matcher library. Another tool is provided for
adding semantics to UDDI registries and Web Services and
for discovering them, called METEOR-S WSDI. It uses a
specialised ontology to map each registry to a specific do-
main. WSDL operations are also mapped to concepts from
an operation’s domain ontology. By annotating their pre-
conditions and effects, they can be matched with a user’s
goal, expressed using service templates with the operation,
inputs, outputs, preconditions and effects.

METEOR-S is limited in the expressivity of the seman-
tic mark-up: it only annotates the inputs and outputs of a
Web Service. Secondly, it lacks an independent execution
environment, for the actual execution of Web Services an
external engine is used [1].

Beside these scientific tools there are several commer-
cial B2B servers available from different vendors. All of
the major software vendors offer solutions to address the
needs from the B2B domain. The majority of these integra-
tion tools has initially been developed before the advent of
Semantic Web Service. Hence they lack any semantic an-
notation of services and do not fully support discovery and
interoperability.

6 Conclusion and Further Work

Web Services represented a step forward in enabling
the collaborations between various entities on the Web and
in overcoming the imminent interoperability problems that
may appear. Business-to-Business can fully benefit from
their usage by allowing business entities to expose their
capabilities and to consume the functionality offered by
their partners. Therefore, information systems based on
a service-oriented architecture able to integrate different
functionalities and to offer a virtual component model that
abstracts from the peculiarity of specific implementations,
seem to be a very appealing solution. In this paper we have
described how WSMX tackles the requirements occurring
in B2B collaborations. As such WSMX applies a new par-
adigm: Semantic Web Services. Based on the principles of
WSMO, this semantic annotation allows WSMX to address
the interoperability and discovery issue in a different man-
ner than currently available integration tools.

WSMX (using WSMO discovery approaches) can find
service offers that logically match with the service re-
quested; if terminology differences occur in the descriptions
of the service offer and the service request, WSMX will
mediate those differences. WSMX can invoke selected ser-
vices to achieve the request, again mediating between data
and processes differences. We have provided a default im-
plementation for such a mediator which makes use of a set
of mediation rules specified for the given ontologies. For



the next versions we plan to extend the Choreography En-
gine functionality by a Process Mediation module, in or-
der to allow the compensation of the potential differences
in message exchange patterns of the two business entities.

We have described our ongoing research in formalis-
ing and implementing a composition language and engine
inside WSMX; currently we have two initial approaches:
firstly to use hard-coded business rules to compose goals,
secondly to embed WSMX in an existing process language.

Since the focus of the development of WSMX has been
on the architecture and the components that facilitate this
new paradigm of Semantic Web Services, we have post-
poned the integration of a security component that allows
authentication, authorisation and communication security
until the next release. We do however provide a basic recov-
ery mechanism through our event-based model with persis-
tent storage of all events in the system.

We have tested our system in a real-world use case, in-
volving ordering broadband Internet lines from different
telecommunications providers [14]. We concluded that for
full support of this use-case we need to extend the WSMO
model slightly, and also we need to provide process man-
agement support (service composition) in WSMX, which is
planned for a future release.

We realise that in this first release of WSMX we have not
yet solved all the described problems from the B2B integra-
tion domain. However, since we use the new paradigm of
Semantic Web Services it is possible to address these prob-
lems comprehensively. We already thoroughly address the
discovery and interoperability problems; we plan to con-
tinue with our work in the next release on security and com-
position. We expect to be able to easily extend the func-
tionality since on the one hand we have a firm conceptual
basis using Semantic Web Services, and on the other hand a
firm technical basis using our event-based service-oriented
architecture.

Acknowledgements This work is funded by the Euro-
pean Commission under the project DIP and by the Sci-
ence Foundation Ireland under the projects DERI-Lı́on and
m3pe. We would like to thank to all the members of the
WSMX working group.

References

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Con-
straint driven web service composition in METEOR-S. In
Proceedings of IEEE International Conference on Services
Computing, 2004.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard. Web services architecture.
W3C Working Note, http://www.w3.org/TR/ws-arch, 2004.

[3] S. Burbeck. The evolution of Web applications into service-
oriented components with Web services. http://www-
106.ibm.com/developerworks/webservices/library/ws-tao/.

[4] C. Bussler, D. Fensel, and A. Maedche. A conceptual ar-
chitecture for Semantic Web enabled Web services. SIG-
MOD Record (ACM Special Interest Group on Management
of Data), 31(4):24–29, 2002.

[5] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–229, 1993.

[6] U. Keller, M. Stollberg, and D. Fensel. WOOGLE meet
semantic web. In Proceedings of the Workshop on WSMO
Implementations, 2004.

[7] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller,
H. Lausen, and D. Fensel. A logical framework for web ser-
vice discovery. In ISWC 2004 Workshop on Semantic Web
Services: Preparing to Meet the World of Business Applica-
tions, 2004.

[8] R. Lara, D. Roman, A. Polleres, and D. Fensel. A concep-
tual comparison of WSMO and OWL-S. In Proceedings of
ECOWS 2004, pages 254–269, 2004.

[9] F. Leymann. Web services: Distributed applications with-
out limits -an outline-. In G. Weikum, H. Schöning, and
E. Rahm, editors, Proceedings of BTW 2003: Datenbanksys-
teme für Business, Technologie und Web. Springer, 2003.

[10] L. Li and I. Horrocks. A software framework for matchmak-
ing based on semantic web technology. In Proceedings of
the International Conference on the World Wide Web, 2003.

[11] D. J. Mandell and S. A. McIlraith. Adapting BPEL4WS for
the semantic web: The bottom-up approach to web service
interoperation. In The SemanticWeb - ISWC 2003, pages
227–241, 2003.

[12] M. Moran, M. Zaremba, A. Mocan, and C. Bussler. Using
WSMX to bind requester & provider at runtime when exe-
cuting semantic web services. In Proceedings of the Work-
shop on WSMO Implementations, 2004.

[13] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II:
A framework and infrastructure for semantic web services.
In The Semantic Web - ISWC 2003, pages 306–318, 2003.

[14] E. Oren, A. Wahler, B. Schreder, A. Balaban, M. Zaremba,
and M. Zaremba. Demonstrating WSMX – least cost supply
management. In Proceedings of the Workshop on WSMO
Implementations, 2004.

[15] OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.0/owl-s.html, 2004.

[16] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara.
The DAML-S virtual machine. In The SemanticWeb - ISWC
2003, pages 290–305, 2003.

[17] W. M. P. van der Aalst, M. Dumas, and A. ter Hofstede. Web
service composition languages: Old wine in new bottles? In
Proceedings of the 29th Euromicro Conference (EUROMI-
CRO’03), pages 298–305, 2003.

[18] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Ound-
hakar, and J. Miller. METEOR-S WSDI: A Scalable P2P In-
frastructure of Registries for Semantic Publication and Dis-
covery of Web Services. Journal of Information Technology
and Management, 6(1):17–39, 2005.


